

QL90V8SM

- 905nm 25W 85°C
- IR Laser Mar. 2019 (Ver. 3)

Application

- Laser Range Finder (LRF)
- Automotive applications
- etc.

Features

- 905nm IR Laser
- Short Pulse Operation
- TE mode laser
- 5.6mm Package

• Electrical Connection

P/N	Pin Configuration	Internal Circuit
QL90V8SM	Bottom View 0.5±0.1 3 0.2 0.2 0.2 0.5±0.15	3.COMMON M type

MS8VOEJD

1. ABSOLUTE MAXIMUM RATING

Item	Symbols	Values	Unit
Peak Output Power	P_{peak}	35	W
Forward Current	${f I_f}$	40	A
Pulse Width (FWHM)	$t_{\rm p}$	100	ns
Duty Ratio	$\mathrm{D_r}$	0.1	%
Reverse Voltage	$V_{\rm r}$	3	V
Operating Temperature	$T_{ m opr}$	-40 ~ +85	$^{\circ}$ C
Storage Temperature	${ m T_{stg}}$	-40 ~ +100	$^{\circ}$

2. ELECTRICAL and OPTICAL CHARACTERISTICS at Tc=25°C

Item	Symbol	Min	Тур	Max	Unit
Optical Output Power	P_{op}	23	25	-	W
Emission Wavelength	$\lambda_{\rm p}$ 895 905 915		915	nm	
Spectral Width (FWHM)	$\lambda_{ m W}$	-	7	-	nm
Threshold Current	$ m I_{th}$	-	-	1	A
Operating Current	I_{op}	-	30	-	A
Operating Voltage	V_{op}	-	-	9	V
D D' (EWHIM)	θ_{II}	-	- 10 -	deg	
Beam Divergence (FWHM)	$ heta_{\perp}$	-	28	-	deg
Temperature Coefficient of Wavelength	$\triangle \lambda / \triangle T$	-	0.28	-	nm/℃
Temperature Coefficient of Optical Power	$\triangle \operatorname{Pop} / (\triangle \operatorname{T} \times \operatorname{Pop})$	-	-0.3	-	%/°C

Note 1: Operating condition

- Pulse Width tp = 100nsec, Repetition Frequency Fr=1kHz, Duty Ratio Dr=0.01%

Note 2 : Tc = Case (Stem) temperature

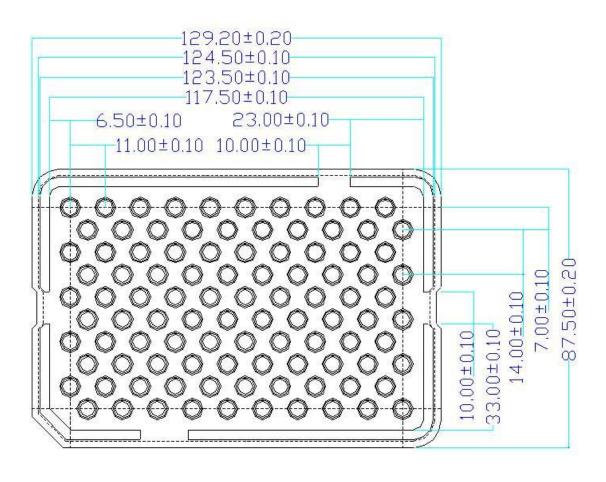
- The products and product specifications are subject to change without notice.

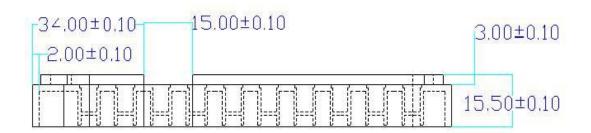
3. CHIP CHARACTERISTICS

Item	Symbol	Min	Тур	Max	Unit
Aperture Size	W×H	-	200×1	-	um

MS8VOEJD

3. PACKAGE DIMENSION (unit: mm)




Note: Tolerance is $\pm 0.05 \text{mm}$ for items without tolerance marking

MS8VOEJD

4. PACKING

M28V0EJD

5. PRECAUTIONS

1) Absolute maximum ratings

The absolute maximum ratings which must not be exceeded even momentarily have been established for over driving laser operation reason such as COD. Exercise particular caution with respect to the drive voltage supply and static electricity.

2) Prevention of surge current and electrostatic discharge(ESD) and surge stress

Laser diode is sensitive device to ESD and surge, so even an extremely short time, laser diode damaged with the strong light emitted.

Use the power supply that was designed not to exceed the optical power output specified at the absolute maximum ratings

We advise talking the following protective measures

- -. Ground the device and circuits
- -. When working with laser diodes wear anti-static clothing.

 Grounded wrist straps should always be worn while working with laser diodes.
- -. Use anti-static containers for transport and storage.
- -. Laser diode deterioration and damage can occur due to excessive current spikes when the power is turned on or off.

Design circuits to avoid the generating of excessive current spikes

3) Soldering

When soldering, please give attention to the mechanical stress and the temperature. Temperature of die-pad portion should be less than 200°C. It is recommended to radiate heat by putting heat sink on the package.

X Soldering temperature and time : Iron temperature less than 350℃ within3sec (leads only)

4) Eye Safety

When the laser diode is in operation, looking into laser beam directly by naked eyes, even through a lens, microscope or optical fibers, may cause severe damage to human eyes. For observing laser beams, using safety goggles is recommended